
Dr. Syed Asim Jalal
Department of Computer Science

University of Peshawar

Data Structures and Algorithm Analysis

8

Queues

Queue
 Queue is a linear data structure.

 Queue is an ordered collection of items from which
items may be removed at one end – called the Front
of the queue – and into which items may be inserted
at the other end – called the Rear of the queue.

 The first element inserted into the queue is the first
element to be removed. Queue is therefore also
called FIFO (First-In First-Out) structure.

 Queue data structured is used when data is
processed in sequence

4

 Everyday life examples of Queue includes:
– People waiting in line at a bank
– Cars passing through Toll gate

Applications in Computer systems

 Time sharing system:
– In a time sharing system different programs are

assigned to processor for execution.
– Programs are added to Queue to wait for turns

to executed.

 Managing Buffer
– Queue implements buffers, for sending data

between a fast computer and any slow device –
for example Printers.

6

Queue Operations

 Insert(q, A):
– place A at the rear of the queue q
– Also called enqueue()

Delete(q)
– remove the front element from q and return it.
– All called dequeue()

 IsEmpty(q)
– return TRUE if the queue is empty,
– FALSE otherwise

What is Queue underflow?

Delete operation is only possible if a
queue is not empty

 The condition resulting from trying to
remove an element from an empty queue.

 A queue is checked for underflow before
removing an element.

if(! q.IsEmpty())

q.Dequeue(item);

What is Queue overflow?

 The condition resulting from trying to add an
element onto a full queue.

 Queue is checked for overflow before add
elements in that queue

if(! q.IsFull())

q.Enqueue(item);

Representation of Queue
 Queue can also be implemented using both

– Array
– Linked List

 The decision to use Array or a Linked List
depends on the requirements of the queue
application.

Array Implementation
 Queue could be implemented using Array with two

variables or indexes, Front and Rear.
– Rear is initialized to -1,
– Front is initialized to 0.

 Insert operation would look like
• q[++rear] = x
• // increment Rear index and assign new value

 Remove operation would like
• X = q[front++]
• // Assign value and increment Front index

 Queue is empty condition
• Rear < front

 Algorithm for adding an element in a Queue would look like
this:

(rear = SIZE – 1)

12

 Algorithm for removing an element from a Queue would look
like this:

1. If (rear < front)
(a) Display “The queue is empty”
(b) Exit

2. else
(a) Data = Q[front]

3. Front = front +1

4. Exit

13

There are problems in the algorithm we identified
so far

dequeue()
dequeue()
enqueue(8)

14

 the array that was used to implement it, has reached its limit
as the last location of the array is in use now. We know
that there is some problem with the array after it attained the
size limit. We observed the similar problem while
implementing a stack with the help of an array. We can also
see that two locations at the start of the array are vacant.
Therefore, we should consider how to use those locations
appropriately in adding more elements in the array.

 Although, we have Insert and Remove operations running in
constantly, yet we created a new problem that we cannot
Insert new elements even though there are two places
available at the start of the array. The solution to this
problem lies in allowing the queue to wrap around in a
circular way.

The problems are

15

What are Implementation issues to
consider when implementing Queue
through Circular Arrays?

 How to reuse empty spaces in the arrays which
become vacant after delete (de-queue operations)?

 How do we know if a queue is full or empty based
on the values of Front and Rear indexes?

 What values should be used to initialize front and
rear indexes?

Circular Array

 Circular Array is an array where indexes starts back from 0
after reaching maximum value. If we have 8 elements array.
Then range of array indexes are from 0 to 7.

 In circular array when an index is reached till 7 then the next
index would become 0 starting from start.. Making it a
circular array.

17

 In circular array we will increment indexes like:
– rear = (rear + 1) % size
– front = (front + 1) % size

18

19

Now, the queue becomes full

Enqueue using circular array

Using the variable “total-number-of-elements”

20

Insert / Enqueue Algorithm

21

Delete / dequeue Algorithm

22

Over Flow and Under Flow Conditions using “Number of
Elements” vairable

• isFull()returns true if the number of elements (noElements) in
the array is equal to the size of the array. Otherwise, it
returns false.

• Similarly isEmpty()looks at the number of elements
(noElements) in the queue. If there is no element, it returns
true or vice versa..

23

Queue enqueue and dequeue operations as a
Circular Structure.

Now we will identify another method of
implementing Overflow and Underflow of
Queue using Front and Rear variables
without using the Number of Elements
variable in the queue.

We will find what values of Front and Rear
will identify Full and Empty conditions of a
Queue.

Is there way to find Under Flow and Over Flow
conditions using Front and Rear indexes
/variables?

25

How do we know if a queue is full or empty using
Rear and Front pointers?

So in CIRCULAR IMPLEMENTATION of Queue both
Empty and Full cases Rear and Front has the same

relation of equation

So we need to find another way to implement the
Circular Queue so that Empty and Full cases have
different relationships of Rear and Front to identify
Overflow and Underflow scenarios.

27

MODIFIED IMPLEMENATION:
Make front point to the element preceding the front
element in the queue (one memory location will be
wasted).

(rear+ 1) % MaxSize == Front

Front = 0 and Rear = 0

(rear+ 1) % MaxSize == Front

Queue is empty for rear == front

Initialization of Front and Rear:
So we can initialize front and rear to 0 as
this would also represent empty queue in
the start.

Algorithms Circular Queue

While implementing Circular Queue using Array,
initialise Front = 0 and Rear = 0

 Algorithm for Enqueue
Enqueue(value)
{
if (Front == (rear+ 1) % size)

Over flow, Insert not possible
Exit

rear = (rear+ 1) % size
array[rear] = value

} 31

 Algorithm for Delete / Dequeue

dequeue(value)
{
if (Front == Rear)

Queue is Empty, Delete not possible
Exit

front = (front + 1) % size
x = array[front]

}

32

	Slide Number 1
	Queues
	Queue
	Slide Number 4
	Slide Number 5
	Applications in Computer systems
	Queue Operations
	What is Queue underflow?
	What is Queue overflow?
	Representation of Queue
	Array Implementation
	Slide Number 12
	Slide Number 13
	There are problems in the algorithm we identified so far
	The problems are
	What are Implementation issues to consider when implementing Queue through Circular Arrays?
	Circular Array
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Insert / Enqueue Algorithm
	Delete / dequeue Algorithm
	Slide Number 23
	Slide Number 24
	Now we will identify another method of implementing Overflow and Underflow of Queue using Front and Rear variables without using the Number of Elements variable in the queue. ��We will find what values of Front and Rear will identify Full and Empty conditions of a Queue.
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Algorithms Circular Queue
	Slide Number 32

